

Solution Strategies for the Dynamic Warehousing Location under Discrete Transportation Costs

Braulio Brunaud and Ignacio Grossmann

Carnegie Mellon University

Yisu Nie, Matt Bassett and John Wassick

The Dow Chemical Company

EWO Meeting, Carnegie Mellon University Pittsburgh, September 2016

Problem Description

- t: time periods (months) p: products
- Decide the number, size, location and contracting length for warehouses
- Dynamic decision of opening/closing warehouses at every period
- Plan the inventory allocation
- Multiple transportation modes, with discrete costs
- 5 year planning horizon
- Seasonal Demand

Discrete Transportation Costs

Integer Units

$$\sum_{p} x_{jkpt} \le \sum_{m} TCap_{m} u_{jkmt}$$

 u_{jkmt} integer

Dynamic Contracting Policies

	1	2	3	4	5	6	7	8	9	10	11	12
Not Allowed												
Allowed												

Ex: min wait = 3, min length = 3

1. y_t^s : 1 if a contract is started in period t

$$-y_t + y_{t-1} + y_t^s \ge 0$$

2. y_t^f : 1 if a contract is finished in period t

$$-y_t + y_{t+1} + y_t^f \ge 0$$

Minimum wait

$$\sum_{\tau=t+1}^{t+W} y_\tau + W y_t^f \le W$$

If a contract is finished in period t the warehouse can not be used in the next W periods

Minimum length

$$\sum_{\tau=t}^{t+L-1} y_{\tau} \ge L y_t^s$$

If a contract is started in period t the warehouse must be used in the next L periods

Flow Cost Structure

• Inbound and outbound unit cost with penalty for high volume

4. Safety Stock with Risk Pooling effect

Safety Stock

• safety stock = $z \sigma \sqrt{L} \approx ss = \beta x$

Risk Pooling

• Stock out risk decreases with number of customers served

Effect of Transportation Costs

Continous Costs

Discrete Costs

It is important to consider discrete transportation costs

Tightening Constraints

1. Plants must supply at least enough to meet demand

$$\sum_{i \in I_p} \sum_j x_{ijpt} \ge \sum_k D_{kpt} - \sum_j (s_{jpt} + ss_{jpt}) \qquad \forall p, t$$

2. It is not possible to ship to/from a closed warehouse

$$\sum_{i} \sum_{p} x_{ijpt} \le UB \ y_{jt} \qquad \forall j, t$$

- 3. No transportation units are used in a lane with a closed warehouse $u_{jktm} \le UB \ y_{jt} \qquad \forall j, k, t, m$
- 4. Transportation units for a defined MOT are at most the exclusive mode number of units

$$u_{ijrm} \le \frac{1}{TCap_m} \sum_{p \in P_i} x_{ijpt} + 1$$

15% time reduction

∀i,j,m

Model Reformulations

Motivation:

- 1. Network design is driven by warehouse-customer transportation costs
- 2. Customers value consistency in their service
- 3. Reduce model complexity

Results:

	Original	JKP	ЈК		
CPU (s)	364	60	26		
Objective Value	\$ 3.29 M	\$ 3,32 M	\$ 3,35 M		
Objective var	-	+ 0.7%	+ 1.5%		

- JKP : A customer receives **each product** from a specific warehouse
- JK : A customer receives **all products** from a exclusive warehouse

15 Plants, 15 Warehouses, 10 Customers, 10 Products, 12 Months, 16 Modes of Transportation

Multistage heuristics

SP: All products aggregated as one ٠

2-Stage

- **SM**: Single transportation mode using the average cost per lane ٠
- **RM**: Relaxed integrality on transportation units ۰
- F#: Full model with warehouses and/or lanes fixed ٠

Heuristics Results

Future Challenge

FSP

Benders

The heuristics can be upgraded to rigorous decomposition algorithms if valid cuts are obtained from mixed-integer subproblems

Long-Term Goal

Decomposition can mimic the way companies make decisions